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Percolation framework in Ising-spin relaxation
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We introduce a framework based on the percolation idea to investigate the relaxation under zero-temperature
Glauber and outflow dynamics on L X L square and triangular lattices. This helps us to understand the appear-
ance of a double time regime in the survival probability. We show that the first, short-time, regime corresponds
to relaxation through droplets and the second, long-time, regime corresponds to relaxation through stripes. For
both dynamics the probability that the system becomes ordered through droplets (which indicates fast relax-

ation) is about 2/3.
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Systems quenched from a disordered into an ordered
phase (such as the Ising model quenched from initial tem-
perature Ty= to final Tp=0) in the thermodynamic limit
never reach the final ferromagnetic steady state. This is one
of the reasons why the theory of phase ordering kinetics has
remained a challenge for more than four decades (for a re-
view, read [1]). Moreover, Spirin et al. [2] showed that even
a simple two-dimensional Ising ferromagnet has a large num-
ber of metastable states with respect to zero-temperature
Glauber dynamics [3] and, therefore, at zero temperature the
system could get stuck forever in one of the metastable states
that consists of alternating vertical or horizontal stripes—
from now on we call it the stripe configuration (S). This is
understood on the basis of the definition of zero-temperature
Glauber dynamics, which involves picking a spin at random
and flipping it according to the direction of a majority of its
nearest neighbors. If there is no majority, the spin is flipped
with probability 1/2. Thus a straight interface does not
evolve. A slight difference between square and triangular lat-
tices in the probability Pg.() that the system eventually
reaches a stripe state was found in [4]: Pg(0)=0.315 and
0.344 on the square and triangular lattices, respectively.
Moreover, in the case of the square lattice in about 0.04 of all
simulations a diagonal stripe (DS) configuration appears [2].

Very interesting behavior is exhibited by the survival
probability S(¢) that the system has not yet reached its final
state by time 7. On a semilogarithmic plot S(¢) lies on a
straight line with a large negative slope and then crosses over
to another line with smaller negative slope [2]. Recently,
similar behavior of S(r) was observed for Ising spins under
outflow dynamics [5], which originally was introduced to
describe opinion change in a society [6].

A number of social experiments have shown that, when
faced with a strong group consensus, people often conform
even if they believe that the group may be in error. However,
even a single visible dissenter from the group’s position em-
boldens others to resist conformity [7]. This observation was
recently expressed in a simple one-dimensional “united we
stand, divided we fall” model of opinion formation [6]. The
model was later renamed the Sznajd model by Stauffer ef al.
[8] and generalized to a two-dimensional square lattice. In its
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two-dimensional version the model has found a number of
social applications (for reviews, see [9—13]), but in this paper
we investigate it from the theoretical point of view. The cru-
cial difference between the Sznajd model and zero-
temperature Glauber dynamics [3] is that information flows
outward from the center nodes to the surrounding neighbor-
hood and not the other way around—hence the name outflow
dynamics. It should be mentioned that, although one-
dimensional outflow dynamics obeys detailed balance, no
finite-temperature version of the outflow rule has been pro-
posed up till now. It seems that the temperature cannot be
introduced into our dynamics without breaking the detailed
balance condition, but further studies concerning this issue
are definitely needed. Moreover, in contrast to Glauber dy-
namics, generalization of the one-dimensional rule to higher
dimensions is neither straightforward nor unambiguous. Sev-
eral types of two-dimensional outflow dynamics have been
already introduced [5,8,9], and recently three of them have
been investigated from the theoretical point of view [5]. For
all three investigated outflow dynamics, a short- and a long-
time regime have been observed. The short-time regime (fast
relaxation) was observed for about 2/3 of all trials [5].

In this paper, we introduce a framework based on the
percolation idea to investigate the evolution of the configu-
ration under zero-temperature Glauber and outflow dynamics
on two-dimensional square and triangular lattices (sugges-
tions that percolation phenomena can influence zero-
temperature dynamics have appeared already in [14]). This
helps us to understand the appearance of two time regimes in
the survival probability S(r). We focus here only on one type
of outflow dynamics defined below, but the same results
could be obtained for other types of two-dimensional outflow
dynamics investigated in [5]. Let us begin with the definition
of the dynamics. The system consists of L X L Ising spins
S;=*1 (i=1,...,L* placed on a two-dimensional lattice
with periodic boundary conditions. In the case of the square
lattice, in each update a 2 X2 panel of four neighbors is
selected randomly. If all four spins in a panel are parallel
then the panel flips its eight nearest neighbors to the unani-
mous direction of the four spins in the panel. In other cases,
these eight neighbors are left unchanged. Similarly we define
the dynamics on a triangular lattice (for details see [5]). Un-
der outflow dynamics the system eventually always reaches a
ferromagnetic steady state, in contrast to zero-temperature
Glauber dynamics. For this reason outflow dynamics is sim-
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FIG. 1. Snapshots of the sample relaxation under outflow dy-
namics on a two-dimensional 100X 100 square lattice from a ran-
dom initial state consisting of 50% up spins after (a) 100, (b) 300,
(c) 400, (d) 1000, (e) 1500, and (f) 2300 Monte Carlo steps (MCS).
In this trial, after a relatively short time (about 300 MCS) a simply
connected cluster (droplet) is formed.

pler to analyze and the percolation framework is easier to
understand.

Let us begin with presenting two sample relaxations under
our outflow dynamics on a 100 X 100 square lattice (see Figs.
1 and 2). Initially, the system consists of randomly distrib-
uted equal numbers of up (50%) and down (50%) spins.
After a relatively short time in each relaxation only one of
two types of configurations is created—droplets (Fig. 1) or
stripes (Fig. 2). In the stripe configuration one of the stripes
eventually breaks at one point to form a droplet and from this
moment the evolution of the system leads very quickly to the
ferromagnetic steady state. This observation led us to the
following postulate: A system quenched from a disordered to
an ordered phase evolves through droplets (fast relaxation) or
stripes (slow relaxation). The first, short-time, regime in the
survival probability S(7) corresponds to relaxation through
droplets, and the second, long-time, regime to relaxation
through stripes. We expect that the above postulate is valid
not only in the case of outflow but also zero-temperature
Glauber dynamics. To confirm this postulate we introduce
now a framework based on the percolation idea.

In the following the quantity of central interest will be the
connectivity of clusters of given spins (up or down) in a
specified direction (top to bottom or left to right). We say
that the connectivity is nonzero (1) in a given direction (e.g.,
left-right) if two opposite edges of the system (left and right)
can be connected via a continuous path composed of the
given spins [e.g., for spins up we denote the left-right con-
nectivity as P;r(7)=1 and so on]. For one type of spins there
are four distinct possibilities of overall connectivity: zero in
both directions (00), nonzero in one direction (01 or 10), and
nonzero in both (11). As we deal with two types of spins,
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FIG. 2. Snapshots of the sample relaxation under outflow dy-
namics on a two-dimensional 100X 100 square lattice from a ran-
dom initial state consisting of 50% up spins after (a) 100, (b) 300,
(c) 500, (d) 5000, (e) 14 000, (f) 15 000, (g) 15 100, and (h) 16 000
Monte Carlo steps (MCS). In this trial after a relatively short time
(about 1000 MCS) the stripe configuration is formed. Eventually,
one of the stripes breaks at one point to form a simply connected
cluster, and from this moment the evolution of the system leads
very quickly to the final state with all spins in the same state.

there are (at least in principle) 16 various combinations of
connectivity possible. In the hard wall boundary conditions
some configurations are forbidden, e.g., up spins connected
vertically while down spins are connected horizontally. With
periodic boundary conditions, however, all possibilities are
valid; see Fig. 3 for a short review. Some configurations [the
first four—the chessboard, stripes (horizontal or vertical) on
chessboard, and odd configurations] are so exceptional that
we have never observed them in real simulations. The main
idea of the percolation framework analysis of system dynam-
ics consists in counting how much time the system spends in
each configuration in its history from the random initial state
toward the steady final state. In order to obtain information
in as clear and compact way as possible, for each simulation
sample, we provide four cumulative times spent by the sys-
tem in the following configurations: droplet (D), stripes (S),
diagonal stripes (DS), and transient (7). The diagonal stripes
configuration is generally defined as having full connectivity
in both directions (horizontal and vertical) for both spin ori-
entations (up and down): [11-11]—see Fig. 3. Its name
comes from the simplest example of this configuration in the
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FIG. 3. All possible configurations with respect to connectivity
of up and down spins on a lattice with periodic boundary condi-
tions. In the middle column a digit 1 appearing at a given position
indicates the connectivity of spins up or down in the vertical (TB)
or horizontal (LR) direction. The first four types, although theoreti-
cally possible, do not appear in real simulations.

shape of alternating stripes angled at 45° to the horizontal.
Here the periodicity of the boundary conditions is crucial,
otherwise there is no possibility of connectivity in both di-
rections for both spin components. The last configuration’s
name (7) comes from the fact that these states do not last
long and are possibly a by-product of a transition between
more stable configurations. In order to speed up the simula-
tions, we decided to make a check of the configuration type
not continuously, but at certain times. We verified that our
choice of checking time interval (=1 MCS) did not affect the
quality of the results.

Application of the percolation framework analysis to our
outflow dynamics helps in understanding the shape of the
survival probability obtained in previous work [5]. The data
confirm our postulate of either fast evolution through drop-
lets or slow evolution through stripes. The times spent by the
system in various configurations are presented in Fig. 4 for
our outflow dynamics on a periodic square lattice of size L
=100. There are shown data collected from N=1000 simula-
tions. For each simulation the relaxation time is the abscissa
of the symbols. For each configuration type appearing (D, S,
DS, 7T) its cumulative time is the ordinate. Thus for each
simulation there are four points at the same abscissa value,
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FIG. 4. (Color online) Relaxation under outflow dynamics on
two-dimensional 100X 100 square lattice from random initial state
consisting of 50% up spins; the data from N=10 simulation are
presented. Symbols show how much time the system spends in
given configuration type before reaching the final state. For short
relaxation times (7<4X 103> MCS) the evolution goes mostly
through the droplet state (D), while for longer relaxation times
nearly 100% of the time is spent in the stripe configuration (S)
[occasionally in the diagonal stripe (DS) configuration]. The cross-
over time (here approximately 4 X 103> MCS) coincides with the
time where the change of slope appears in the survival probability

[5].

representing the contributions of particular configuration
types to the total relaxation time. For example, let us con-
sider a simulation having relaxation time 10 000 MCS. Let
us assume that during the evolution toward its final state the
system spent 2000 MCS in D configurations, 7950 MCS in S
configurations, 45 MCS in T configurations, and 5 MCS in
DS configurations. Thus resulting from this particular simu-
lation there appear four points on the plot having the follow-
ing coordinates: (10000, 2000), (10 000, 7950), (10 000,
45), and (10 000, 5). The proximity of a symbol to the line
y=x indicates that the system dwells in the corresponding
configuration most of the time until relaxation. The log-log
setting of the plot makes it possible to bring out more details
interesting for further analysis. Let us assume that a particu-
lar configuration type (say X) dominated the system history
until the final state in all simulations with relaxation times
from some interval. Thus one would see that symbols corre-
sponding to this configuration type X would group high in
the plot along the line y=x (or very close to this line) on the
mentioned interval. The other, much rarer configuration
types would be found as symbols at the bottom of the same
plot. On the other hand if there was a case of equally long-
lasting configuration types (say, each types D, S, T, and DS
took 25% of the relaxation time), the points would all lie
well below the line y=x (this is not the case in the considered
set of data, however). There is yet another possibility—in
different simulations of given relaxation times various con-
figuration types dominate. In such a case it could be seen on
the plot that the different symbols approach the line y=x (in
our case we have there a transition region; see further in the
text).

All simulations considered in Fig. 4 naturally split into
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two sets—one (.A), for which the droplet configuration domi-
nates (this is the case for all simulations with relaxation time
smaller than 4 X 10> MCS) and the second (B), where the
system spends most of the time in the stripe configuration
(here belong all simulations with relaxation times greater
than 6 X 10° MCS). To the latter also belong the rare simu-
lations for which long-lived diagonal stripes are observed.
There is also a third, transition region (relaxation times be-
tween 4 X 10° and 6 X 10> MCS) consisting of simulations
for which the dominant configuration type is not unique.
Then there is a considerable probability of finding simula-
tions with various dominant configuration types.

In the set A (short relaxation times) we attribute different
values of the droplet dwelling time to different sizes of the
droplet arising from the random initial state (for bigger drop-
lets the relaxation time is longer [5]). The dynamics of the
samples from the set B is different: most of the time the
system spends in the stripe configuration, after which the
stripe breaks and the resulting droplet evolves according to
the previous scenario (pertaining to the set A). In this case
the droplet part of the total time remains at the same level
(about 1.5X 10°> MCS on Fig. 4); this is because the droplet
arising from breaking the stripe has more or less the same
size (of order of half the size of the system). In the case of
the stripes their dwelling time has a much broader distribu-
tion, resulting not only from the differences in width of the
stripes that arise from the random initial state, but mainly
from behavior similar to a Brownian random walk. For the
stripe configuration the rather straight interface between
clusters of spins with different orientations has equal chance
to move in either direction (for the droplet the direction of
the interface movement is always toward its center). The
characteristic time limiting from above the set A (here about
4% 10° MCS) coincides exactly with the time of change in
the slope of the survival probability [5]. These two regimes
of exponential dependence correspond to evolution through
either the droplet or stripe configuration (the former are in-
terestingly always about 2/3 of all cases).

From the above analysis there appears the following sce-
nario for the dynamics of the system. At the first stage, when
the system starts its evolution from a totally random state
with 50% spins up and 50% spins down (i.e., quenched from
infinite temperature) small clusters tend to either grow or
disappear and the characteristic length in the system (the
mean width of the clusters) approaches the system size. The
interface between clusters of opposite spins gets smoother
and smoother. At a certain (rather short) time the state of the
system belongs to either the droplet, stripe, or diagonal stripe
configuration. In the first case (D) it is known [5] that the
droplet relaxes to the final steady state relatively fast via
shrinking (it has been proved already that every smooth
closed curve in the plane asymptotically approaches a
shrinking circular shape [15,16]). In the case when the sys-
tem in the first stage is in the stripe configuration, the evo-
lution is much slower (stripes at some points get thicker, at
others get thinner). One of the stripes eventually narrows to
make a break, the cluster becomes simply connected, and the
configuration switches to a droplet. The only configuration
not discussed yet—the transient one (T)—appears for short
periods and only either at the beginning of the simulations
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FIG. 5. (Color online) Relaxation under Glauber (inflow) dy-
namics on two-dimensional 100 X 100 square lattice from a random
initial state consisting of 50% up spins; the data from N=103 simu-
lation are presented. Symbols show how much time the system
spends in a given configuration type before reaching the final state.
For short relaxation times (7<<2X 10* MCS) the evolution goes
mostly through the droplet state (D). For much longer relaxation
times (>8 X 10* MCS) nearly 100% of the time is spent in the
diagonal stripe configuration (DS). For intermediate relaxation
times the stripe configuration (S) dominates. The crossover time
(here approximately 2 X 10* MCS) coincides with the time where
the change of slope appears in the survival probability [5].

(when the system “decides” whether to go through the stripe
configuration or directly through the droplet configuration)
or at switching times, when the system changes its configu-
ration (e.g., DS— D). Our extensive simulations proved that
all above statements remain valid for outflow dynamics on a
triangular lattice as well.

In the case of Glauber dynamics the overall dynamics
characteristic is somewhat similar, but a bit more compli-
cated. This is because in this dynamics the regular stripe
configuration (with straight line interfaces) is the final one
(in contrast to the outflow dynamics, where it always decays
to the ferromagnetic state with all spins parallel). In Fig. 5
there are presented data for Glauber dynamics simulations,
but here the relaxation time is measured until the system
reaches any of its final states (including regular stripes).
There is a natural partition into three sets of simulations: set
C with evolution mostly through droplets (it corresponds to
the set A of the previous dynamics), set D with the evolution
leading mostly through diagonal stripes (somewhat similar to
the set BB), and set £ of samples leading to the final regular
stripe configuration, characterized by the absolute majority
of stripe configurations.

Cases from the set C correspond exactly to the previously
described set A of outflow dynamics. The only difference
between the set D and the previously considered set B is that
in the set for Glauber dynamics there is evolution only
through diagonal stripes, since the horizontal and vertical
stripes no longer decay to the ferromagnetic state and they
form the new set £. Depending whether the system decides at
an early stage to evolve through the droplet configuration,
stripes, or diagonal stripes, we got the shortest, moderate,
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and longest relaxation times, respectively. In the plot of sur-
vival probability of Ref. [2] the change of the slope coincides
with the largest time in the set C (here 2 X 10* MCS). The
relative size of the set C (the probability that the system
chooses the droplet configuration) is here also 2/3, as it was
in the case of outflow dynamics. This universal constant for
outflow dynamics [5] and for Glauber dynamics on a square
lattice as well as on a triangular one (we checked that
Glauber dynamics on a triangular lattice also conforms with
the previous conclusions for a square lattice) must have some
simple explanation, but unfortunately it needs further inves-
tigations. One can suppose that this property is of a funda-
mental nature for the broader class of zero-temperature dy-
namics considered in the literature [17,18].
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We believe that the percolation framework we proposed
in this paper could be used to study relaxation not only in the
case of zero-temperature Ising-spin dynamics, but also in a
much broader class of coarsening systems. Our method gives
deeper insight into the relaxing system than the survival
probability. It cannot describe configurations in detail, as was
done, for example, in [19]. On the other hand, it gives gen-
eral information on the system structure during relaxation,
which may help to find some universal features of the dy-
namics investigated.
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